网站首页    工业材料    工业4.0,最难的路
  • 中国钾盐缺口

    中国有56%的耕地需要“补钾”,总体上越往东南越严重,闽、湘、鄂、粤、海南以及江淮地区土壤钾含量都十分稀少,高效钾含量只有新疆、关中农业区的二分之一甚至四分之一。2023年,中国钾盐缺口68%,需进口1000多万吨,而由于钾的高度垄断,进口选项非常有限。

    0 ¥ 0.00
  • 三井物产的情报网

    微软的情报系统对企业经营的贡献率大约是17%左右,而三井这种贸易财团则是以信息为最终的经济效益,其情报就是整个公司的命脉。作为民间研究机构,从研究的深度、广度和企业接受程度来看,比政府研究机构更有效率。其成果被日本企业界认为是经济变化的风向标。

    0 ¥ 0.00
  • 为什么盒装奶是950毫升?

    国内的一些牛奶包装沿用了美国的可折叠屋顶式纸盒设计,用的模具一样,那标注的容量也跟别人一样,取近似值950毫升。制造商在保持包装大小和价格不变的情况下,稍微减少产品的体积。这可以帮助公司在生产成本上升时控制开支,而不会显著提高零售价格。

    0 ¥ 0.00
  • 一个县城与打火机

    12道工序、32个零配件、15项测试标准……制造出1元打火机。全球一年销售200亿只,约七成来自中国湖南邵东。这里年产打火机150亿只,远销120个国家和地区,串起来能绕地球20圈。在邵东,平均每1分钟就有2.8万个打火机下线,其打火机生产技术也在不断创新。

    0 ¥ 0.00
  • 重生的俄罗斯农业

    2002年俄出台《农业用土地流通法》后,一系列法律让农用土地流通得以明确、透明地进行,保证了农业政策的稳定性。2007年对农业发展做出规划,实行农业保护政策和农产品价格调控政策,对农作物保险费实施补贴。次年俄罗斯农业从粮食净进口国转变为粮食净出口国。

    68 ¥ 0.00
  • 印度,用糊糊驯服味蕾

    谷物的富余,让印度不怕浪费粮食,人们发现,面粉和米粉作为糊糊的增稠剂,质地更浓郁粘稠、香料与食材融合度更好,且可以保温和解腻,缓解糊油脂和肉类的油腻感。原本粗劣的糊糊,在不断融合的过程中,越来越能驯服各种各样的食材,并形成另一条美食路径。

    60 ¥ 0.00
  • 拜耳伤痕

    买下孟山都,彻底改变了拜耳的发展轨迹。拜耳最大的三项并购是2006年以199.5亿美元的价格收购先灵公司,2014年以142亿美元收购默沙东的OTC业务,以及2016-2018年间以630亿美元收购孟山都。前两项并购起码还增强了拜耳的制药业务竞争力,最糟糕的是对孟山都的收购。

    19 ¥ 0.00
  • 全球家族办公室现状

    只有少数家族办公室将注意力放在促进家族团结和长期稳定上。在职能专业化方面,投资管理进展最为显著,而其他职能专业化水平则存在差异。家族本身的专业化水平也呈现出类似的情况。许多家族和家族办公室都缺乏领导人接班规划,并且未为下一代制定教育规划

    73 ¥ 0.00
  • 日本地理标志保护制度

    长期以来,日本对地理标志的保护,都是通过《反不正当竞争法》《商标法》等法律提供的被动保护。2014年日本颁布GI法。该部专门法对地理标志的保护进入主动保护阶段。该法能制定实施,除了促进农林水产等产业发展、保护消费者利益外,与欧盟谈判也是重要因素。

    24 ¥ 0.00
  • 全球产业链演化历程

    技术演进、竞争优势和风险环境是推动全球产业链发展的三股主要力量。技术演进是产业链结构变化的基础。在不同时期,三股力量以不同形式共同塑造全球产业链格局。在当前,三者分别对应着绿色化、效率性和安全性,使产业链呈现绿色化与多国多中心化的发展趋势。

    240 ¥ 0.00
  • 游戏行业的肉与汤

    AI会不会彻底改变这个行业,“不好说”,“AI原生游戏大概率不会是我们先搞出来,可能是哪个做AI的实验室先做出来,然后其他人会在他们的基础上往下走,”卢竑岩表示,目前还没有看到离实用特别接近的科研成果,“但也很难说,会不会突然有爆发性地增长。”

    0 ¥ 0.00
  • 120年美国房价历史和规律

    从1890年到2013年的123年中,有28年下跌,95年上涨。其中跌得最深的是2008年,跌幅达18%。连续下跌达到5年的只有两次,第一次是1929-1933年累积跌幅达26%;2006-2011年累积跌幅达33%。在过去的123年中,美国房价平均增长率为3.07%,CPI 通胀率为2.82%。在扣除通胀率后,房价就基本不涨了。

    0 ¥ 0.00
  • 枢纽城市之争

    超级承运人与枢纽机场相辅相成,带来大量客流、物流,从而拉动当地经济发展。无论是超级承运人,还是枢纽机场,都强调“集中”,如达美航空在亚特兰大份额超过80%,堪称“堡垒枢纽”。而中国目前有57家航司,三大航在北上广基地份额都仅在40%-50%之间,市场份额较为分散。

    0 ¥ 0.00
  • 波音从工程奇迹到信任危机

    批评人士说,波音公司把安全当成了利润的牺牲品。”这样做是为了让波音的运营更像一家企业,而不是一家伟大的工程公司。波音的确是一家伟大的工程公司,但人们投资一家公司是因为他们想赚钱。”今天的波音既不是一家伟大的工程公司,也不是一个好的投资对象。

    0 ¥ 0.00
  • 计算机产业史

    本文从1946年第一台计算机ENIAC发明开始,阐述计算机作为不同效用工具为人所用。从科学计算、数据处理、适时控制,到线上社交、个人玩乐、办公效率、图形工具,再到内容平台、互联网与云计算时代,最后计算机已经融入到我们生活方方面面,无处不在。

    互联网之所以能够大而统一,发挥最大网络效应,与其去中心化的基础定位有很大关系:数据包发送方式和发送内容无关,任何设备都可以加入互联网,唯一中心化的域名管理机构获得了独立且非营利地位,互联网治理更多依赖社交机制,而不是靠特定机构来管理。

    27 ¥ 0.00
  • 墨西哥的中国工厂

    中国企业到墨西哥以前,目光紧盯着美国,到墨西哥后却发现了许多新机会。同时到了墨西哥后,它们惊觉,中国经验失灵了。不同于过去从欧美日企业到亚洲四小龙再到中国,再从中国到东南亚的产业转移,中资企业到墨西哥是一场大国博弈背景下的应变之策。

    74 ¥ 0.00
  • 像研究人类一样研究ChatGPT

    一篇有关“机器心理”的预印本。他在其中提出,把LLM当作一个人类对象来对话,可以揭示底层简单的计算之中产生的复杂行为。Google的研究引入“思维链提示”,来描述一种让LLM展示“想法”的做法,会让模型按相似的流程行事。它会输出思维链,这么做更可能获得正确答案

    28 ¥ 0.00
  • 欧亚电网互联的地缘要素

    欧亚电网互联问题上,欧盟和俄罗斯等传统“电力中心”依然重要,新“中心”如中国、印度、土耳其、伊朗等也在崛起。随着技术发展,电网容易受外部力量影响,美国也在不断尝试渗透。电网联通可以建立包容、平等、开放的政治空间;同时,也可以成为政治制度堡垒。

    116 ¥ 0.00
  • 北京与“繁华”

    相比窄路,大宽马路大街区反而才堵车。小尺度的交叉口信号相位少、周期短,可使清空距离和损失时间变短。北京“宽马路、疏路网”,与东京、纽约、香港“窄马路、密路网”,后者利于微循环打通,利于商业繁荣。另外,不是街区制,三百万以上人口就会爆发城市病。

    77 ¥ 0.00
  • 日本基金业萧条30年后

    90年代初至今,日本基金行业直面“失去的30年”。但仍实现一定程度结构性发展:当资金逃离权益市场,通过出海等方式拥抱固收业务、后开发养老金投资、逐月决算基金等特殊业态,头部机构又依托日本央行购买ETF扩表等,在被动产品上做大规模,最终铸成今日格局。

    138 ¥ 0.00

【作者:穆胜;选自:即将出版的《创造高估值:打造价值型互联网商业模式》一书,梁世超对本文亦有贡献。转自:财富中文网《狂热过后才发现这条路最难走,工业4.0还有春天吗?》2019.09

 

工业4.0(或称工业互联网、智能制造、互联制造、分布式制造等)的好处无需赘述,去库存化、个性定制、去中介化、消除对于人工的依赖……但相比几年前的一拥而上、寻求颠覆,如今的工业4.0玩家们也开始归于冷静。因为,经过若干次探索后的他们知道,这条路可能是产业互联网的商业模式里最难走的一条。

那么,经过了几年的探索,工业4.0的春天真的来了吗?

 

繁荣盛景

 

工业4.0的概念最先是由德国提出的。2012年年底,德国产业经济联盟向德国联邦政府提交《确保德国未来的工业基地地位:未来计划工业4.0”实施建议》。之后,这一概念在国际间快速传播,引发了一轮热潮:美国于2012年、2013年、2016年分别提出了先进制造业国家战略计划美国制造业创新网络计划国家制造业创新网络计划年度报告与战略规划;日本在2013年和2015年发布了两版《制造白皮书》;法国在2013年和2015年发布了新工业法国的概念;英国于2015年提出了英国制造2050”;中国于2015年提出了中国制造2025”……诸多的概念,指向的其实都是工业4.0类模式。

工业时代依次经历了机械化、电气化、自动化、智慧化四个阶段,依次对应着工业1.04.0。所谓的工业4.0是指利用物联信息系统(Cyber-Physical System,简称CPS)将生产中的供应、制造、销售信息数据化、在线化、智慧化,最后达到快速、精准响应个性化产品需求的效果。说简单点,就是将生产力做互联网化(云化),以便使其能够被用户的个性化需求随需调用。

既然是可以带来政策利好的国家战略,又是对产业的深度改造,这类模式自然被无限看好。2017年中国工业互联网市场规模达到4,676.99亿元,增长率为13.5%,成为一个重要的起风点。后续,随着产业政策逐渐落地,市场空间的放量速度也有望逐渐增加,预计2020年中国工业互联网市场规模可达6,929.12亿元。

12015~2020年中国工业互联网市场规模及增长率走势图

 

资料来源:穆胜企业管理事务所根据智研咨询数据整理

 

2018年,有40多家工业互联网公司获得了融资,相较于2017年增长了一倍多。其中有10家获得了千万元以上的融资。

12018年获得超过千万元以上融资的工业4.0项目

资料来源:穆胜企业管理咨询事务所根据天眼查数据整理

从融资的结构上分析,融资的笔数总体随着年份增加,A轮之前的早期投资基本保持了数量,同时,A轮、B轮、C轮和战略投资的笔数都在放量。这说明资本热度是持续的,且呈逐年增加的态势,另外,资本也有长线投资的动作,跟进到了后期。在二级市场上,富士康(工业富联)成功登陆上交所并融资271亿元,也是一个非常强烈的风向标。这说明,对于工业4.0这种模式,资本是看好的。

220152018年工业互联网融资情况

注:这里A轮之前表示种子轮、天使轮和Pre-A。资料来源:穆胜企业管理咨询事务所根据天眼查数据整理

当然,相对S2b2CB2B电商的项目,大多时候,这类项目的估值并不算太高。其原因在于,工业4.0的解决方案一般是以SaaS的方式切入的,而一旦被资本定义为SaaS企业,估值就一定上不去(在中国)。所以,这类项目大多强调自己不是做工具,而是解决方案提供者,并且会提及自己的落地能力。但是,资本是不是这样看,就是另一回事了。

 

重度游戏

 

这条赛道问题的关键可能不在于估值。相对资本在观望中的热捧,工业4.0项目的表现却难言出色。

若干未上市公司都宣称它们的工业4.0取得了重大进展,业界甚至也自动捧出了若干个标杆。但未上市公司宣称的数据不太具有说服力,它们始终回避不了一个质疑——如果真的那么出色,为什么还没有走到IPO呢?如果没有走到IPO,或者没有提交上市申请的材料,其业绩就始终难辨真伪。所以,我们还是基于上市公司的数据来进行研究。

我们的研究团队在A股市场上选取了54家工业4.0概念股,分析了2013年到2018年的财务数据,其中还剔除了ST的样本。有三个结论可以关注:

第一,毛利率并未明显提升。有23家企业实现了毛利率的增长,而30家企业的毛利润率下降了,53家企业的毛利率复合增长率的平均值为-0.65%

第二,库存商品占营业收入的比例并未明显下降。有26家企业的该比值上升,而27家企业的该比值下降。这53家企业的平均比值的复合增长率为0.49%,还有小幅上升。

第三,库存商品占存货的比例并未明显下降。有25家企业的该比值上升,而28家企业的该比值下降,53家企业的平均比值的复合增长率为-0.96%,只能说略有下降。

当然,在我们观察的样本中,还是有凤毛麟角的头部企业的改革取得了进展,在此不妨通过头部企业的个案分析来看看工业4.0的进展。深圳长城开发科技股份有限公司(000021)属于电子信息制造服务(EMS)行业,主营电子产品研发制造服务,是工业4.0概念股的典型代表。在我们分析的53家样本公司里,其毛利率的复合增长率为13.72%,排名第一。虽然其毛利率极低,一直没有超过6%,但这是由其行业特征决定的,我们依然不能否认毛利率的增长势头。

3:深科技经营情况

数据来源:穆胜企业管理咨询事务所根据深科技年报(2013~2018)整理

如果说工业4.0可能带来了毛利的变化,那么,这种生产模式是否也改变了库存水平呢?从数据上看,这种观点并没有得到支持,深科技的库存商品占营收比例处于震荡状态,并未持续下行。此外应该注意到的是,深科技的库存一直上升,主营业务收入则相对稳定,这导致库存/主营业务收入的指标持续上涨。这不得不让人怀疑工业4.0为其带来的实际效果。

4:深科技库存与主营业务收入比较情况(2013~2018

数据来源:穆胜企业管理咨询事务所根据深科技年报整理

如此一来,我们有必要分析存货结构。可以发现,库存商品的绝对数是有所上升的,而其在库存中的占比则是在下降。主要原因是原材料和发出商品增长迅猛,导致了库存商品的相对占比下降。这是因为深科技在2017年获得了华为手机招标中的最大标的,并在同年新导入了VIVO、华勤两家大客户,所以增加原材料以保证供应。这一点在其财报披露中也得到了证实。

5:深科技库存结构情况(2015~2018

数据来源:穆胜企业管理咨询事务所根据深科技年报整理

6:深科技库存占比情况(2015~2018

数据来源:穆胜企业管理咨询事务所根据深科技年报整理

相比起来,另一家标杆企业宝钢的数据可能更具说服力,其通过旗下的宝信软件搭建了工业4.0的平台,实现企业内部信息流、资金流和物流的集成和融合。在2014~2018年间,宝钢的毛利润率的复合增长率为9.3%。更重要的是,其库存商品的绝对数趋于稳定,并开始减少,在营收逐渐增加的同时,库存商品占主营业务收入比例逐年下降,依次为4.63%6.19%2015年受国际钢材市场波动的影响,营收、毛利润和毛利润率都有所下降。所以,这个时间点上的数据并不能反映工业4.0改造的真实效果。)、3.11%2.8%。对比同行业的其他对手,排除首钢通过布局立体停车场这类非钢业务来实现了去库存,宝钢的数据独占鳌头。此外,从库存商品在库存中的占比上也逐年下降。

总体来看,工业4.0模式主张的几个变化,在大多样本企业中并没有出现,但我们却可以从宝钢这类先行者的数据里看到趋势。(另外有一些局部的案例也值得关注,例如通用电气与东方航空签订了工业互联网的合作协议,利用自己的Predix平台对东航机队数据进行分析,确定出节约成本的机会,从而帮助东航改善运行效率及燃油节省。我们的数据显示,排除油价上涨的干扰,这个合作的确在一定程度上达成了合作预期。)这可能验证了我们的观点——这条路确实难走。其实,这是可以理解的,毕竟这种模式投入太重。企业要完全从批量化大生产(Mass Production)的模式走向大规模定制(Mass Customization),不仅要让生产线布满传感器,还要改造不少硬件,更涉及到要将物料量化,还要打通整个生产的数据系统……这里面简直是关隘重重,如果不是有坚定决心的大玩家,很难玩得转。

 

To C的模式之争

 

如果说工业4.0是个重度游戏,需要长线投入,那么此时商业模式就是关键。因为商业模式的威力决定了未来,决定了当前的估值,决定了玩家(尤其是投资者)的耐心。那么,巨额投入才能改造出智能制造的生产系统,在成熟之后究竟有多大威力呢?

在商业模式上,手握杀器的制造业企业,最大的一个愿望就是用工厂直连用户。因为,如果不能有效连接到用户,定制化生产的效率就依然无法在最大程度上发挥。这里面的关键在于C2BCustomer to Business)和C2MCustomer to Manufactory)的争议。

C2B的概念最早起源于2006年美国洛杉矶新型电子商务年会,报告人Ross Muller首次使用了这一概念来形容拼单采购模式。这一模式被美国的Groupon等企业发扬光大,最后蔓延到了国内,形成了以美团为代表的一批企业。在初期,这里的C2B更多还是消费互联网领域的,撮合的是商品或服务的交易。隔行如隔山,大量的参与者似乎没有绝对的信心向制造端渗透。

C2M显然更进一步,就是用户直接面对制造商,相对于C2B这里更强调了去中间化。于是,一些制造工厂雄心勃勃地想要用C2M的模式突围而出。它们坚信,相对于C2BC2M去掉了“B”这个中间环节,消费者在平台上表达需求,制造商来满足需求,显然更进一步。而面对自己不擅长经营流量的现状,它们还给出了一个看似很有说服力的理由——未来的用户会越来越不重视品牌,转而以自我为中心来追逐独此一款的订制品。

早前,在若干智能制造企业中,它们无论自身体量大小,都空前一致地认为C2B是一种过渡模式,终极状态一定是C2M。于是,它们纷纷建立C端用户入口,PC站、微信号、APP、线下店……在拥抱大型电商进行合作的同时,坚决不向这些流量入口彻底缴枪,坚决要树立自己的旗帜。

但猜对了故事的开始,却没有猜到故事的结局。除了海尔这样拥有庞大制造能力和已经建立渠道影响力(甚至早已建立自有渠道)的企业,其他过于弱小的制造企业基因根本不在C端,根本连接不到用户,做流量经营反而成为了负担,它们理想中的C2M并没有如约而至。说到底,海尔这样的企业即使坐拥COSMO Plat这样的杀器,却依然需要通过大量的第三方渠道商来出货,去渠道、去中介是个伪命题。KOL高效带货、品牌联名一飞冲天、爆款点燃用户热情等现象,更让用户将越来越不看重品牌的猜想被无情击碎。制造企业按照对自己有利的方向,夸大了用户的小众需求,在一条错误的路上埋头狂奔了若干年。最终却证明,C2M的个人定制只是制造业的一厢情愿。

反观另外一些坐拥流量的互联网巨头,其入侵制造端的速度却让人侧目。2016年,网易推出网易严选2017年,阿里巴巴推出淘宝心选2018年,京东推出京造”……这些企业从自营切入,与制造企业开展了ODM(制造商提供设计和制造)的合作,利用C端流量的优势形成了初步探索了C2M的路径。但自营毕竟是重资产模式,在一轮价格战的红海血拼后,这类模式红利出尽。于是,网易启动了网易考拉工厂,淘宝心选也开始转型,回归了平台模式,与制造企业开始了OBM(允许制造商经营自己的品牌)合作。渗透得更深的是拼多多和阿里巴巴淘宝旗下的天天特卖(由天天特价升级而来),它们力图通过条码、RFID、摄像头等设备对工厂进行轻量化的物联网式改造,将工厂的产能数据与网店打通,实现极致的按需定产。当然,这种改造在制造企业的眼里似乎很幼稚,初期的拼多多还用了手机摄像头对着生产线这样的粗暴形式。但流量巨头们的目标很清晰,它们瞄准的是那些找不到销路的中小企业,赋能它们相对简单,逻辑是你有流量我就听你的。另外,也别低估了互联网企业的学习速度,从小企业开始,迭代成熟的解决方案可以向更大规模的企业渗透,甚至它们还可以通过投资的方式获得相对成熟的工业4.0解决方案,它们是有机会的。

我们原来认为互联网企业吃不透产业,在这个赛道里应该不占优势,但我们的研究却在某些方面呈现了相反的结论。流量在手,摧枯拉朽,流量巨头们似乎离C2M更近一些。

 

To B的平台化之殇

 

如果走不通to C生意,制造企业可能希望退回来深耕产业端,为行业赋能。事实上,之前意图直连C端的它们就曾经设想,可以依托对C端的影响来反向整合产业链,用这种在线的智能制造系统改造出若干的智能工厂,并在线上实现连接,形成柔性的分布式生产力网络。甚至,这张网络还可以整合设计、金融、原料等参与者,最大程度地满足用户的各类诉求,打造一个大生态。其实,这就形成了一个深度的S2b2C模式,即用自己的工业4.0方案赋能小工厂。

但尴尬的是,就算大型制造巨头把自己的工业4.0方案做得异常出色,外部的企业可能也不需要它们的赋能。我们看到的是,这些外部企业无论大小,更多还是会将原有的制造业巨头视为对手而非赋能者。这些企业的内心台词是:你说太长远的事情我听不懂,我就看你能不能帮我解决销路(流量)问题。这可能是一个理念的问题,但我们看到的现状就是这样。

当前,在国内已经有海尔的COSMO Plat、美的的M.IoT、沈阳机床的SESOL、徐工机械的Xrea、三一集团的RootCloud等工业4.0平台,但无论是哪个平台,都不敢说自己已经对行业形成了深度影响。所以,巨头企业几经努力改造完成后的工业4.0解决方案,也可能只是自己一家企业的玩具。其实,这类困境在互联网经济渗透的初期就曾经出现过。每当一家巨头企业希望搭建一个平台时,其一定绕不开一个质疑——凭什么让你又当运动员,又当裁判员?

另外,要做智能工厂的改造也没有那么容易,这不是装上传感器、加载几个软件模块、简单调试调试、训练好工人就能够成功的。甚至,在当前的技术条件下,有的行业的有些环节还依然脱离不了人工,根本无法进行工业4.0改造。生产制造是一个复杂系统,其需要的赋能深度远远超过想象。一位销售行业出生的创业者曾经以为这种改造一个星期就能够落地,结果却被无情的现实打脸。

也许,只有西门子的Mindsphere和通用电气的Predix这类量级的平台才可以解决这一问题。这类平台提供了从硬件、软件到云服务的一站式解决方案,其投入的资源显然也是其他小企业无法匹敌的。另外,它们的体量也大到了足以让玩家们认为是中立的程度。

但有意思的是,两大巨头的境遇各不相同。

西门子的数字化工厂集团(DF)致力于为企业提供全面的无缝集成软硬件和技术服务,帮助其提高制造流程的灵活性和效率,缩短产品上市时间,这一部门主要负责MindSphere。其解决方案前期用于自己,后期慢慢开始转为给客户提供服务。目前来看,数字化工厂营收逐步扩大,利润率稳定增长。

7:西门子经营状况

数据来源:穆胜企业管理咨询事务所根据西门子财务年报(2015~2018)整理

反观通用电气的Predix,则是另外一番境遇。应该说,通用电气对于工业互联网的转型是坚定的。2016年,时任通用电气首席执行官的杰夫·伊梅尔特阐述了自己的宏伟蓝图,号称要把通用电气由一家硬件公司变成一家软件公司,要走向数字化。2013年推出的Predix显然是他的王牌,但运行几年来,Predix却主要被用于内部的GE电气和GE航空,一直未找到成功的商业模式。根据通用电气的年报,2017年数字化业务的收入为40亿美元,对比2016年收入增长4亿美元。但在2017年年初,其预计本年的数字业务可以增长50亿美元,但最终结果远远没有达到自己的预期,亏损持续。这种糟糕表现也影响了通用电气的股价,导致其不得不于2017年正式宣布剥离出售Predix(以及GE Digital的一些其他资产)。

2017年,海尔的张瑞敏参观过GE Digital,并与其高层进行过交流。当时的一个感觉是,他们特别强调软件和数据,强调他们对于数据处理的专长,这来自于他们的软件基因。相反,西门子的思路是更加强调基于硬件的数据能力,这来自于他们的硬件基因。此外,他们也明确宣布谁拥有设备、谁就拥有数据所有权,这样也与通用电气不同。从结果来看,西门子显然更接地气,也充分说明了工业4.0俯下身段进产业的一条路。

当然,足以搭建平台来当裁判员的不只有传统的制造巨头,我们也不应该忽略了腾讯和阿里巴巴对于产业互联网的决心。消费互联网中成长起来的流量巨头对于硬件可能不太擅长,但对于软件和云服务绝对是轻车熟路。在选好姿势的前提下,他们有心也有力一争高下。

 

另一条路

 

其实,无论是通用电气还是西门子,它们的工业4.0方案都是从制造端发力,并没有借助B端用户的力量。但是,从需求一侧发起变革,不就是互联网商业模式摧枯拉朽的原动力吗?

当前,国内有屈指可数的几家企业正在实践一种模式,而这种模式可能是工业4.0破局的另一条路。

今年912日,一家名为智布互联的企业宣布完成了1亿美元的C轮融资。这笔融资在资本的寒冬期完成已经实属不易,而入局者更是耀眼,腾讯和红杉领投,经纬、IDG等跟投。

这家企业成立于2014年,是典型的工业4.0方案提供者,但其商业模式的独特之处在于,其不光通过SaaS来解决后端生产的精准和效率问题,还通过搭建前端的B2B交易平台(纺织厂与成衣厂之间的)解决销路问题。事实上,智布通过对纺织厂的深度调研发现,生产的精准和效率问题并不是这群客户真正的痛点,真正的痛点是获得订单。这与我们前面的判断是一致的。

进一步看,这是很多工业4.0赛道的企业没有走出来的误区,它们认为老板需要生产的精准和效率,这绝对正确,但让工业4.0的方案落地并不是由老板一个人决定的。在企业内部改变哪个生产环节都会无比艰难,因为企业的每个部分都会有现有机制和利益既得者来阻扰变革。结果往往是老板热情很高,员工比较消极,觉得新模式增加了自己的麻烦。众口一词阻碍新事物的现象,我们看得还少吗?另一家服装行业的工业4.0项目的创业者讲述了一个案例:裁剪工原来是工厂高薪聘请的,而他们工业4.0的方案用裁床和智能制版替代了他们的功能,于是引发了强烈抵触。

所以,智布发展B端客户的逻辑就变得无比简单,他们关注的是老板急需的问题——“我们可以帮你们拉到订单,但你们必须用我们的SaaS系统。当然,用了系统之后的好处也能够反映在平台的收益上,由于成本降低,中间环节差价变大,平台分佣自然增加。

其实,换一种思路,即便没有智布这么强大的B2B电商平台,要拿订单也没有那么困难。上述的那家服装行业的项目就专门收集行业的小单(小批量订单),这些小单发挥不了规模经济的效应,没有什么油水,往往是被制造企业嫌弃的,接单大多也是因为有大单建立起来的交情。但这家企业将小单拼到了一起,并给出了让小单制造也能划算的工业4.0解决方案。只要工厂接单,一套数据包就会发过去,制版和效果图都已经做好。如此一来,小的制造工厂就没有理由拒绝了。毕竟,制造业宁可让成本收入对冲,也不愿意让机器闲置。说到这里,不禁要特别提醒一下,工业4.0的未来从来就不是单件定制,而是小批量大规模定制,这是互联网渗透产业的不二法门。

无论如何,智布这类企业真正实现了反向影响产业链,只不过,它们不是凭借对于C端用户的影响,而是凭借对于B端客户(成衣厂)的影响。据智布的投资人披露,在广东纺织重镇佛山张槎,79%的纺织厂都介入了智布互联平台,而智布可以帮助合作紧密的工厂将开工率从60%提升到85%以上,并且90%的产能都来自于智布提供的订单。

当智布一头掌握了成衣厂的需求,一头掌握了纺织厂的供给时,它们就变成了一个行业的平台,而由于供需都实现了在线化,这个平台的撮合效率变得很高。例如,他们可以让单个纺织厂尽量处理同类订单,发挥规模经济的效应。再比如,他们可以在同一时间调动分布式生产力,解决大单的交期难题。要实现这个效果,最难的可能还在于如何让纺织厂实现在线化,当然,没有成衣厂的在线化也是不可能的。明修B2B电商平台的栈道,暗度工业4.0的陈仓,智布这类模式真正为缺乏竞争力的B2B电商模式注入了内核——打通了产业链的数据链条,这是效率的基础。

当然,产业互联网对数据链条的深度要求是极高的,智布对于产业链的渗透还有巨大空间。在此基础上,他们已经组建了一支200多人的研发团队,在不断优化SaaS产品的同时,也开始布局做PaaS。基于PaaS的底层,会孵化出更多的SaaS,甚至切入信息流、物流、技术流、资金流的服务。到了那个时候,智布的平台还会有更大的想象空间。

与高举高打的西门子和通用电气不同,智布这类小平台从行业切入,基于对行业的理解,做更轻量化、更接地气的解决方案,并在一个个里程碑之后,逐渐走入了深度赋能的模式。等到他们成熟了,我们会在行业里发现一个个的MindspherePredix

以小博大,龟兔赛跑,不是不可能。

2019-10-07
工业4.0玩家经过若干次探索后,他们知道,这条路可能是产业互联网的商业模式里最难走的一条。不过别低估互联网企业的学习速度,从小企业开始,迭代成熟的解决方案可以向更大规模的企业渗透,甚至可以通过投资的方式获得相对成熟的工业4.0解决方案,它们有机会。

工业4.0,最难的路

znzl